Thermographic real-time-monitoring of surgical radiofrequency and microwave ablation in a perfused porcine liver model

نویسندگان

  • Florian Primavesi
  • Stefan Swierczynski
  • Eckhard Klieser
  • Tobias Kiesslich
  • Tarkan Jäger
  • Romana Urbas
  • Jörg Hutter
  • Daniel Neureiter
  • Dietmar Öfner
  • Stefan Stättner
چکیده

Radiofrequency ablation (RFA) and microwave ablation (MWA) are currently the dominant modalities to treat unresectable liver tumors. Monitoring the ablation process with b-mode-sonography is often hampered by artefacts. Furthermore, vessels may cause cooling in the adjacent tumor target (heat-sink-effect) with risk of local recurrence. The present study evaluated infrared-thermography to monitor surgical RFA/MWA and detect heat-sink-effects in real-time. RFA and MWA of perfused porcine livers was conducted at peripheral and central-vessel-adjacent locations, and monitored by real-time thermography. Ablation was measured and evaluated by gross pathology. The mean time for ablation was significantly longer in RFA compared with MWA (8 vs. 2 min). Although mean macroscopic ablation diameter was similar (RFA, 3.17 cm; MWA, 3.38 cm), RFA showed a significant heat-sink-effect compared with MWA. The surface temperature during central RFA near vessels was 1/3 lower compared with peripheral RFA (47.11±8.35°C vs. 68.72±12.70°C; P<0.001). There was no significant difference in MWA (50.52±8.35°C vs. 50.18±10.35°C; P=0.74). In conclusion, thermography is suitable to monitor the correct ablation with MWA and RFA. The results of the current study demonstrated a significant heat-sink-effect for RFA, but not MWA near vessels. MWA reaches consistent surface temperatures much faster than RFA. With further in vivo validation, thermography may be useful to ensure appropriate ablation particularly near vulnerable or vascular structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Investigation of Brightness Changes in Ultrasound Images due to Temperature Variations in Liver Tissue during Radiofrequency Ablation

Introduction: one of the minimally invasive methods of treatmenting liver malignancies is Radiofrequency Ablation (RFA) which can be applied to primary or secondary tumors. Nevertheless, the disease recurrence is probable after RFA application partially due to the inadequate capability of temperature monitoring of the target tissue and visualizing the thermal damage. The goal of this work was t...

متن کامل

Real-time Semi-automatic Segmentation of Hepatic Radiofrequency Ablated Lesions in an In Vivo Porcine Model Using Sonoelastography

Radiofrequency ablation (RFA) is a minimally invasive thermal therapy that is under investigation as an alternative to surgery for treating liver tumors. Currently, there is a need to monitor the process of lesion creation to guarantee complete treatment of the diseased tissue. In a previous study, sonoelastography was used to detect and measure RFA lesions during exposed liver experiments in a...

متن کامل

Optimization of a Novel Microwave Tumor Ablation System in an in Vivo Porcine Liver Model

Background Radiofrequency (RF) ablation is commonly used in the treatment of surgically unresectable hepatic tumors. It is amenable to open, laparoscopic, or percutaneous application, it makes use of well-understood principles of electrical and thermal heating of tissue, and it is readily available. However, local recurrence rates following RF ablation are as high as 39%. Microwave (MW) ablatio...

متن کامل

Percutaneous microwave ablation of thyroid nodules: efficacy evaluation with 99m Tc - pertechnetate and 99mTc-MIBI functional imaging

Background: Local ablative treatments play an important role for patients who cannot be treated surgically. Radiofrequency ablation is a well-established alternative to surgical treatment of thyroid nodules, however it also has disadvantages. Microwave ablation (MWA) is a new minimally invasive treatment promising several improvements. The aim of this retrospective study was to evaluate the eff...

متن کامل

Monitoring Radiofrequency Ablation Using Real-Time Ultrasound Nakagami Imaging Combined with Frequency and Temporal Compounding Techniques

Gas bubbles induced during the radiofrequency ablation (RFA) of tissues can affect the detection of ablation zones (necrosis zone or thermal lesion) during ultrasound elastography. To resolve this problem, our previous study proposed ultrasound Nakagami imaging for detecting thermal-induced bubble formation to evaluate ablation zones. To prepare for future applications, this study (i) created a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2018